Fast Conical Hull Algorithms for Near-separable Non-negative Matrix Factorization

نویسندگان

  • Abhishek Kumar
  • Vikas Sindhwani
  • Prabhanjan Kambadur
چکیده

The separability assumption (Donoho & Stodden, 2003; Arora et al., 2012a) turns non-negative matrix factorization (NMF) into a tractable problem. Recently, a new class of provably-correct NMF algorithms have emerged under this assumption. In this paper, we reformulate the separable NMF problem as that of finding the extreme rays of the conical hull of a finite set of vectors. From this geometric perspective, we derive new separable NMF algorithms that are highly scalable and empirically noise robust, and have several other favorable properties in relation to existing methods. A parallel implementation of our algorithm demonstrates high scalability on sharedand distributedmemory machines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-separable Non-negative Matrix Factorization with ℓ1 and Bregman Loss Functions

Recently, a family of tractable NMF algorithms have been proposed under the assumption that the data matrix satisfies a separability condition (Donoho & Stodden, 2003; Arora et al., 2012). Geometrically, this condition reformulates the NMF problem as that of finding the extreme rays of the conical hull of a finite set of vectors. In this paper, we develop separable NMF algorithms with l1 loss a...

متن کامل

Near-separable Non-negative Matrix Factorization with $\ell_1$- and Bregman Loss Functions

Recently, a family of tractable NMF algorithms have been proposed under the assumption that the data matrix satisfies a separability condition Donoho & Stodden (2003); Arora et al. (2012). Geometrically, this condition reformulates the NMF problem as that of finding the extreme rays of the conical hull of a finite set of vectors. In this paper, we develop several extensions of the conical hull ...

متن کامل

Scalable Methods for Nonnegative Matrix Factorizations of Near-separable Tall-and-skinny Matrices

Introduction to (near-separable) NMF • NMF Problem: X ∈ Rm×n + is a matrix with nonnegative entries, and we want to compute a nonnegative matrix factorization (NMF) X = WH, where W ∈ Rm×r + and H ∈ Rr×n + . When r < m, this problem is NP-hard. • A separable matrix is one that admits a nonnegative factorization where W = X(:,K), i.e. W is just consists of some subset of the columns of X . A near...

متن کامل

The successive projection algorithm as an initialization method for brain tumor segmentation using non-negative matrix factorization

Non-negative matrix factorization (NMF) has become a widely used tool for additive parts-based analysis in a wide range of applications. As NMF is a non-convex problem, the quality of the solution will depend on the initialization of the factor matrices. In this study, the successive projection algorithm (SPA) is proposed as an initialization method for NMF. SPA builds on convex geometry and al...

متن کامل

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013